Unsupervised learning trajectory anomaly detection algorithm based on deep representation
Zhongqiu Wang,
Guan Yuan,
Haoran Pei,
Yanmei Zhang and
Xiao Liu
International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 12, 1550147720971504
Abstract:
Without ground-truth data, trajectory anomaly detection is a hard work and the result lacks of interpretability. Moreover, in most current methods, trajectories are represented by geometric features or their low-dimensional linear combination, and some hidden features and high-dimensional combined features cannot be found efficiently. Meanwhile, traditional methods still cannot get rid of the limitation of space attributes. Therefore, a novel trajectory anomaly detection algorithm is present in this article. Unsupervised learning mechanism is used to overcome nonground-truth problem and deep representation method is used to represent trajectories in a comprehensive way. First, each trajectory is partitioned into segments according to its open angles, then the shallow features at each point of a segment are extracted and. In this way, each segment is represented as a feature sequence. Second, shallow features are integrated into auto-encoder-based deep feature fusion model, and the fusion feature sequences can be extracted. Third, these fused feature sequences are grouped into different clusters using a unsupervised clustering algorithm, and then segments which quite differ from others are detected as anomalies. Finally, comprehensive experiments are conducted on both synthetic and real data sets, which demonstrate the efficiency of our work.
Keywords: Unsupervised learning; outlier detection; deep representation; trajectory data (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720971504 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:12:p:1550147720971504
DOI: 10.1177/1550147720971504
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().