EconPapers    
Economics at your fingertips  
 

Occupancy-balancing downlink transmission for enhancing scalability of LoRa networks

Cheonyong Kim, Joobum Kim, Jaiseung Kwak, Kiwook Kim and Woojin Seok

International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 12, 1550147720979279

Abstract: LoRa/LoRaWAN is growing rapidly as an underlying technology for the Internet of Things because of its long-range connectivity and low power. However, its limited scalability, owing to spread spectrum–based modulation and contention-based medium access control, impedes its use in emerging massive applications. In this study, we propose a downlink transmission scheme for enhancing the scalability of LoRa networks. The proposed scheme consists of two mechanisms. First, a modulation parameter is adjusted using the different transmission power limitations between the gateways and end devices to reduce downlink duration. Second, the timing of downlink traffic is selected based on uplink traffic concentration analysis. The proposed scheme reduces the uplink failure, and consequently, allows more end devices to participate in the network. The simulation results show that the proposed scheme is superior to the standard protocol in terms of the packet delivery ratio.

Keywords: Congestion control; Internet of Things; LoRa/LoRaWAN; packet delivery ratio; scalability (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720979279 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:12:p:1550147720979279

DOI: 10.1177/1550147720979279

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:16:y:2020:i:12:p:1550147720979279