EconPapers    
Economics at your fingertips  
 

Quality enhancement of VVC intra-frame coding for multimedia services over the Internet

Seunghyun Cho, Dong-Wook Kim and Seung-Won Jung

International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 5, 1550147720917647

Abstract: In this article, versatile video coding, the next-generation video coding standard, is combined with a deep convolutional neural network to achieve state-of-the-art image compression efficiency. The proposed hierarchical grouped residual dense network exhaustively exploits hierarchical features in each architectural level to maximize the image quality enhancement capability. The basic building block employed for hierarchical grouped residual dense network is residual dense block which exploits hierarchical features from internal convolutional layers. Residual dense blocks are then combined into a grouped residual dense block exploiting hierarchical features from residual dense blocks. Finally, grouped residual dense blocks are connected to comprise a hierarchical grouped residual dense block so that hierarchical features from grouped residual dense blocks can also be exploited for quality enhancement of versatile video coding intra-coded images. Various non-architectural and architectural aspects affecting the training efficiency and performance of hierarchical grouped residual dense network are explored. The proposed hierarchical grouped residual dense network respectively obtained 10.72% and 14.3% of Bjøntegaard-delta-rate gains against versatile video coding in the experiments conducted on two public image datasets with different characteristics to verify the image compression efficiency.

Keywords: Image compression; coding artifact reduction; CNN; deep learning; VVC (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720917647 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720917647

DOI: 10.1177/1550147720917647

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720917647