Color image steganalysis based on embedding change probabilities in differential channels
Chunfang Yang,
Yuhan Kang,
Fenlin Liu,
Xiaofeng Song,
Jie Wang and
Xiangyang Luo
International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 5, 1550147720917826
Abstract:
It is a potential threat to persons and companies to reveal private or company-sensitive data through the Internet of Things by the color image steganography. The existing rich model features for color image steganalysis fail to utilize the fact that the content-adaptive steganography changes the pixels in complex textured regions with higher possibility. Therefore, this article proposes a variant of spatial rich model feature based on the embedding change probabilities in differential channels. The proposed feature is extracted from the residuals in the differential channels to reduce the image content information and enhance the stego signals significantly. Then, the embedding change probability of each element in the differential channels is added to the corresponding co-occurrence matrix bin to emphasize the interference of the residuals in textured regions to the improved co-occurrence matrix feature. The experimental results show that the proposed feature can significantly improve the detection performances for the WOW and S-UNIWARD steganography, especially when the payload size is small. For example, when the payload size is 0.05 bpp, the detection errors can be reduced respectively by 5.20% and 4.90% for WOW and S-UNIWARD by concatenating the proposed feature to the color rich model feature CRMQ1.
Keywords: Color image; steganography; steganalysis; differential channel; feature (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720917826 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720917826
DOI: 10.1177/1550147720917826
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().