Similarity analysis of dam behavior characterized by multi-monitoring points based on Cloud model
Hanman Li,
Ziyang Li,
Fuheng Ma and
Chengdong Liu
International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 5, 1550147720920226
Abstract:
The availability of massive amount of dam safety monitoring data can make it difficult to analyze and characterize dam behavior. This article describes the use of the Cloud model to transform quantitative monitoring data into qualitative information. Each monitoring point returning dam safety data is regarded as a cloud drop, and parameters such as the expectation, entropy, and hyper-entropy of the monitoring data are obtained through a backward cloud generator to represent the operational state of the dam. The monitoring points are then treated as vectors, and the cloud similarity is calculated using the cosine value of the angle between them. The cloud similarity coefficient is then determined to characterize the similarity of dam behavior. Experimental analysis shows that the process of identifying cloud parameters has a good effect on the discovery of abnormal monitoring values regarding dam safety and demonstrates the feasibility of characterizing the dam behavior. Clustering analysis is applied to the similarity coefficients to further achieve the hierarchical management of dam monitoring points.
Keywords: Dam safety monitoring; Cloud model; cloud similarity; monitoring points group (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720920226 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720920226
DOI: 10.1177/1550147720920226
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().