EconPapers    
Economics at your fingertips  
 

Irrelevant data elimination based on a k-means clustering algorithm for efficient data aggregation and human activity classification in smart home sensor networks

Siriporn Pattamaset and Jae Sung Choi

International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 6, 1550147720929828

Abstract: For the successful operation of smart home environments, it is important to know the state or activity of an occupant. A large number of sensors can be deployed and embedded in places or things. All sensor nodes measure the physical world and send data to the base station for processing. However, the processing of all collected data from every sensor node can consume significant energy and time. In order to enhance the sensor network in smart home applications, we propose the irrelevant data elimination based on k-means clustering algorithm to enhance data aggregation. This approach embeds the cluster head–based algorithm into cluster heads to omit irrelevant data from the base station. The pattern of measured data in each room can be clustered as an active pattern when human activity happens in that room and a stable pattern when human activity does not happen in the room. The irrelevant data elimination based on k-means clustering algorithm approach can reduce 55.94% of the original data with similar results in human activity classification. This study proves that the proposed approach can eliminate meaningless data and intelligently aggregate data by delivering only data from rooms in which human activity likely occurs.

Keywords: Clustering; human activity; k-means; irrelevant data; elimination (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720929828 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720929828

DOI: 10.1177/1550147720929828

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720929828