EconPapers    
Economics at your fingertips  
 

A novel pigeon-inspired optimization with QUasi-Affine TRansformation evolutionary algorithm for DV-Hop in wireless sensor networks

Xiao-Xue Sun, Jeng-Shyang Pan, Shu-Chuan Chu, Pei Hu and Ai-Qing Tian

International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 6, 1550147720932749

Abstract: In modern times, swarm intelligence has played an increasingly important role in finding an optimal solution within a search range. This study comes up with a novel solution algorithm named QUasi-Affine TRansformation-Pigeon-Inspired Optimization Algorithm, which uses an evolutionary matrix in QUasi-Affine TRansformation Evolutionary Algorithm for the Pigeon-Inspired Optimization Algorithm that was designed using the homing behavior of pigeon. We abstract the pigeons into particles of no quality and improve the learning strategy of the particles. Having different update strategies, the particles get more scientific movement and space exploration on account of adopting the matrix of the QUasi-Affine TRansformation Evolutionary algorithm. It increases the versatility of the Pigeon-Inspired Optimization algorithm and makes the Pigeon-Inspired Optimization less simple. This new algorithm effectively improves the shortcoming that is liable to fall into local optimum. Under a number of benchmark functions, our algorithm exhibits good optimization performance. In wireless sensor networks, there are still some problems that need to be optimized, for example, the error of node positioning can be further reduced. Hence, we attempt to apply the proposed optimization algorithm in terms of positioning, that is, integrating the QUasi-Affine TRansformation-Pigeon-Inspired Optimization algorithm into the Distance Vector–Hop algorithm. Simultaneously, the algorithm verifies its optimization ability by node location. According to the experimental results, they demonstrate that it is more outstanding than the Pigeon-Inspired Optimization algorithm, the QUasi-Affine TRansformation Evolutionary algorithm, and particle swarm optimization algorithm. Furthermore, this algorithm shows up minor errors and embodies a much more accurate location.

Keywords: Pigeon-inspired optimization algorithm; QUasi-Affine TRansformation evolutionary algorithm; evolution matrix; DV-Hop algorithm (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720932749 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720932749

DOI: 10.1177/1550147720932749

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720932749