An Internet of Things sensor–based construction workload measurement system for construction process management
JunYoung Moon,
Ahyoung Lee,
Se Dong Min and
Min Hong
International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 6, 1550147720935769
Abstract:
In this article, we adapted a sensor-based smart insole to monitor the workload of the construction material carrying work frequently occurring at the construction site. Generally, the tasks of the construction material carrying work by the construction site workers proceed through walk. Therefore, we designed and implemented an application and server to receive and calculate data from the Internet of Things sensors to automatically estimate the weight of the construction material being carried and time of these works based on the characteristic of walking. As a result of the experimental tests with 15 people using the proposed method, it was confirmed that there was a correlation between the signal change at the foot plantar pressure during walking and the weight change of the construction material carried by the workers. It was confirmed that the foot pressure value during walking can be used to estimate the weight of the construction material that the worker currently possesses. Based on this, we were able to estimate the actual weight of the object with an accuracy of 91% from the 20 new test workers, and we were able to measure the work time with an accuracy of 97%.
Keywords: Gait analysis; workload; walking; Internet of Things sensor; construction site; smart insole (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720935769 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720935769
DOI: 10.1177/1550147720935769
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().