DQN-based energy-efficient routing algorithm in software-defined data centers
Zan Yao,
Ying Wang and
Xuesong Qiu
International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 6, 1550147720935775
Abstract:
With the rapid development of data centers in smart cities, how to reduce energy consumption and how to raise economic benefits and network performance are becoming an important research subject. In particular, data center networks do not always run at full load, which leads to significant energy consumption. In this article, we focus on the energy-efficient routing problem in software-defined network–based data center networks. For the scenario of in-band control mode of software-defined data centers, we formulate the dual optimal objective of energy-saving and the load balancing between controllers. In order to cope with a large solution space, we design the deep Q-network-based energy-efficient routing algorithm to find the energy-efficient data paths for traffic flow and control paths for switches. The simulation result reveals that the deep Q-network-based energy-efficient routing algorithm only trains part of the states and gets a good energy-saving effect and load balancing in control plane. Compared with the solver and the CERA heuristic algorithm, energy-saving effect of the deep Q-network-based energy-efficient routing algorithm is almost the same as the heuristic algorithm; however, its calculation time is reduced a lot, especially in a large number of flow scenarios; and it is more flexible to design and resolve the multi-objective optimization problem.
Keywords: Software-defined data centers; deep Q-network; in-band control; load balance; energy-efficient routing; smart city (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720935775 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:6:p:1550147720935775
DOI: 10.1177/1550147720935775
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().