EconPapers    
Economics at your fingertips  
 

Jointly designed quasi-cyclic LDPC-coded cooperation with diversity combining at receiver

Muhammad Asif, Wuyang Zhou, Qingping Yu, Saifullah Adnan, Md Sadek Ali and Muhammad Shahid Iqbal

International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 7, 1550147720938974

Abstract: This correspondence proposes a jointly-designed quasi-cyclic (QC) low-density parity-check (LDPC)-coded multi-relay cooperation with a destination node realized by multiple receive antennas. First, a deterministic approach is utilized to construct different classes of binary QC-LDPC codes with no length-4 cycles. Existing methods put some limitations in terms of code length and rate in order to provide high error-correction performance. Therefore, this article gives three classes of QC-LDPC codes based on a combinatoric design approach, known as cyclic difference packing (CDP), with flexibility in terms of code-length and rate selection. Second, the proposed CDP-based construction is utilized to jointly-design QC-LDPC codes for coded-relay cooperation. At the receiver, the destination node is realized by multiple receive antennas, where maximal-ratio combining (MRC) and sum-product algorithm (SPA)-based joint iterative decoding are utilized to decode the corrupted sequences coming from the source and relay nodes. Simulation results show that the proposed QC-LDPC coded-relay cooperations outperform their counterparts with a coding gain of about 0.25 dB at bit-error rate (BER) 10 − 6 over a Rayleigh fading channel in the presence of additive white Gaussian noise. Furthermore, the extrinsic-information transfer (EXIT) chart analysis has been used to detect the convergence threshold of proposed jointly-designed QC-LDPC codes. Numerical analysis shows that the proposed jointly-designed QC-LDPC codes provide a better convergence as compared to their counterparts under the same conditions.

Keywords: Quasi-cyclic LDPC; cyclic difference packing; jointly-designed QC-LDPC; coded-relay cooperation; maximal-ratio combining; joint iterative-decoding (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720938974 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:7:p:1550147720938974

DOI: 10.1177/1550147720938974

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:16:y:2020:i:7:p:1550147720938974