EconPapers    
Economics at your fingertips  
 

A three-dimensional pattern recognition localization system based on a Bayesian graphical model

Abdulraqeb Alhammadi, Fazirulhisyam Hashim, Mohd. Fadlee A Rasid and Saddam Alraih

International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 9, 1550147719884893

Abstract: Access points in wireless local area networks are deployed in many indoor environments. Device-free wireless localization systems based on available received signal strength indicators have gained considerable attention recently because they can localize the people using commercial off-the-shelf equipment. Majority of localization algorithms consider two-dimensional models that cause low positioning accuracy. Although three-dimensional localization models are available, they possess high computational and localization errors, given their use of numerous reference points. In this work, we propose a three-dimensional indoor localization system based on a Bayesian graphical model. The proposed model has been tested through experiments based on fingerprinting technique which collects received signal strength indicators from each access point in an offline training phase and then estimates the user location in an online localization phase. Results indicate that the proposed model achieves a high localization accuracy of more than 25% using reference points fewer than that of benchmarked algorithms.

Keywords: Localization; Bayesian inference; fingerprinting (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719884893 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:9:p:1550147719884893

DOI: 10.1177/1550147719884893

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:16:y:2020:i:9:p:1550147719884893