Quality-related fault diagnosis based on k-nearest neighbor rule for non-linear industrial processes
Zelin Ren,
Yongqiang Tang and
Wensheng Zhang
International Journal of Distributed Sensor Networks, 2021, vol. 17, issue 11, 15501477211055931
Abstract:
The fault diagnosis approaches based on k -nearest neighbor rule have been widely researched for industrial processes and achieve excellent performance. However, for quality-related fault diagnosis, the approaches using k -nearest neighbor rule have been still not sufficiently studied. To tackle this problem, in this article, we propose a novel quality-related fault diagnosis framework, which is made up of two parts: fault detection and fault isolation. In the fault detection stage, we innovatively propose a novel non-linear quality-related fault detection method called kernel partial least squares- k -nearest neighbor rule, which organically incorporates k -nearest neighbor rule with kernel partial least squares. Specifically, we first employ kernel partial least squares to establish a non-linear regression model between quality variables and process variables. After that, the statistics and thresholds corresponding to process space and predicted quality space are appropriately designed by adopting k -nearest neighbor rule. In the fault isolation stage, in order to match our proposed non-linear quality-related fault detection method kernel partial least squares- k -nearest neighbor seamlessly, we propose a modified variable contributions by k -nearest neighbor (VCkNN) fault isolation method called modified variable contributions by k -nearest neighbor (MVCkNN), which elaborately introduces the idea of the accumulative relative contribution rate into VC k -nearest neighbor, such that the smearing effect caused by the normal distribution hypothesis of VC k -nearest neighbor can be mitigated effectively. Finally, a widely used numerical example and the Tennessee Eastman process are employed to verify the effectiveness of our proposed approach.
Keywords: Fault detection; fault diagnosis; quality-related; non-linear industrial process; k-nearest neighbor rule (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/15501477211055931 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:17:y:2021:i:11:p:15501477211055931
DOI: 10.1177/15501477211055931
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().