EconPapers    
Economics at your fingertips  
 

Seepage behavior assessment of earth-rock dams based on Bayesian network

Lu He, Shijun Wang, Yanchang Gu, Qiong Pang, Yunxing Wu, Jiefa Ding and Jihao Yan

International Journal of Distributed Sensor Networks, 2021, vol. 17, issue 12, 15501477211058672

Abstract: Seepage behavior assessment is an important part of the safety operation assessment of earth-rock dams, because of insufficient intelligent analysis of monitoring information, abnormal phenomena or measured values are often ignored or improperly processed. To improve the intelligent performance of the monitoring system, this article has established an assessment framework covering project quality, maintenance status, monitoring data analysis, and on-site inspection based on the relevant norms of seepage safety assessment of earth-rock dams and the expert survey scoring method, and the Leaky Noisy-OR Gate extended model were used to determine the probability of events, and the dynamic and static Bayesian networks used to assess the possibility of seepage failure of earth-rock dams and diagnose the most likely cause of failure. The function of static and dynamic Bayesian networks to assess the seepage behavior of earth-rock dams, abnormal measured values, and causes of anomalies can make up for the limitations of reservoir management personnel and monitoring system in seepage failure experience and seepage knowledge of earth-rock dams and enable better handling of abnormal phenomena and monitoring information, making the monitoring system more intelligent.

Keywords: Earth-rock dam; seepage behavior; Bayesian network; assessment; intelligent monitoring (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/15501477211058672 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:17:y:2021:i:12:p:15501477211058672

DOI: 10.1177/15501477211058672

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:17:y:2021:i:12:p:15501477211058672