EconPapers    
Economics at your fingertips  
 

A trajectory data publishing algorithm satisfying local suppression

Xiaohui Li, Yuliang Bai, Yajun Wang and Bo Li

International Journal of Distributed Sensor Networks, 2021, vol. 17, issue 2, 1550147721993402

Abstract: Suppressing the trajectory data to be released can effectively reduce the risk of user privacy leakage. However, the global suppression of the data set to meet the traditional privacy model method reduces the availability of trajectory data. Therefore, we propose a trajectory data differential privacy protection algorithm based on local suppression Trajectory privacy protection based on local suppression (TPLS) to provide the user with the ability and flexibility of protecting data through local suppression. The main contributions of this article include as follows: (1) introducing privacy protection method in trajectory data release, (2) performing effective local suppression judgment on the points in the minimum violation sequence of the trajectory data set, and (3) proposing a differential privacy protection algorithm based on local suppression. In the algorithm, we achieve the purpose Maximal frequent sequence (MFS) sequence loss rate in the trajectory data set by effective local inhibition judgment and updating the minimum violation sequence set, and then establish a classification tree and add noise to the leaf nodes to improve the security of the data to be published. Simulation results show that the proposed algorithm is effective, which can reduce the data loss rate and improve data availability while reducing the risk of user privacy leakage.

Keywords: Classification tree; differential privacy; local suppression; minimum violation sequence (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147721993402 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:17:y:2021:i:2:p:1550147721993402

DOI: 10.1177/1550147721993402

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:17:y:2021:i:2:p:1550147721993402