A simulation work for generating a novel dataset to detect distributed denial of service attacks on Vehicular Ad hoc NETwork systems
Fahd A Alhaidari and
Alia Mohammed Alrehan
International Journal of Distributed Sensor Networks, 2021, vol. 17, issue 3, 15501477211000287
Abstract:
Vehicular Ad hoc NETwork is a promising technology providing important facilities for modern transportation systems. It has garnered much interest from researchers studying the mitigation of attacks including distributed denial of service attacks. Machine learning techniques, which mainly rely on the quality of the datasets used, play a role in detecting many attacks with a high level of accuracy. We conducted a comprehensive literature review and found many limitations on the datasets available for distributed denial of service attacks on Vehicular Ad hoc NETwork including the following: unavailability of online versions, an absence of distributed denial of service traffic, unrepresentative of Vehicular Ad hoc NETwork, and no information regarding the network configurations. Therefore, in this article, we proposed a novel simulation technique to generate a valid dataset called Vehicular Ad hoc NETwork distributed denial of service dataset, which is dedicated to Vehicular Ad hoc NETworks. Vehicular Ad hoc NETwork distributed denial of service dataset holds information on distributed denial of service attack traffic considering Vehicular Ad hoc NETwork architecture, traffic density, attack intensity, and nodes mobility. Well-known simulation tools such as SUMO, OMNeT++, Veins, and INET were used to ensure that all the properties of Vehicular Ad hoc NETwork have been captured. We then compared Vehicular Ad hoc NETwork distributed denial of service dataset with several studies to prove its novelty and evaluated the dataset using several machine learning models. We confirmed that studied models using this dataset achieved high accuracy above 99.5% except support-vector machine that achieved 97.3%.
Keywords: Vehicular Ad hoc NETwork; ad hoc network; distributed denial of service; machine learning; OMNeT++; Veins; dataset (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/15501477211000287 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:17:y:2021:i:3:p:15501477211000287
DOI: 10.1177/15501477211000287
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().