Maximizing network throughput by cooperative reinforcement learning in clustered solar-powered wireless sensor networks
Yujia Ge,
Yurong Nan and
Xianhai Guo
International Journal of Distributed Sensor Networks, 2021, vol. 17, issue 4, 15501477211007411
Abstract:
Power management in wireless sensor networks is very important due to the limited energy of batteries. Sensor nodes with harvesters can extract energy from environmental sources as supplemental energy to break this limitation. In a clustered solar-powered sensor network where nodes in the network are grouped into clusters, data collected by cluster members are sent to their cluster head and finally transmitted to the base station. The goal of the whole network is to maintain an energy neutrality state and to maximize the effective data throughput of the network. This article proposes an adaptive power manager based on cooperative reinforcement learning methods for the solar-powered wireless sensor networks to keep harvested energy more balanced among the whole clustered network. The cooperative strategy of Q -learning and SARSA( λ ) is applied in this multi-agent environment based on the node residual energy, the predicted harvested energy for the next time slot, and cluster head energy information. The node takes action accordingly to adjust its operating duty cycle. Experiments show that cooperative reinforcement learning methods can achieve the overall goal of maximizing network throughput and cooperative approaches outperform tuned static and non-cooperative approaches in clustered wireless sensor network applications. Experiments also show that the approach is effective in response to changes in the environment, changes in its parameters, and application-level quality of service requirements.
Keywords: Solar-powered wireless sensor networks; Internet of things; cooperative reinforcement learning; adaptive power management; energy harvesting (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/15501477211007411 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:17:y:2021:i:4:p:15501477211007411
DOI: 10.1177/15501477211007411
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().