EconPapers    
Economics at your fingertips  
 

Improved firefly algorithm–extended Kalman filter–least-square support-vector machine voltage sag monitoring and classification method based on edge computing

Zhu Liu, Xuesong Qiu, Yonggui Wang, Shuai Zhang and Zhi Li

International Journal of Distributed Sensor Networks, 2022, vol. 18, issue 3, 15501329221087055

Abstract: Aiming at the hardware reusability, multi-service carrying capacity, and computing resource limitations of edge devices, a light-weight voltage sag monitoring and classification method based on improved firefly algorithm optimization, extended Kalman filter, and least-square support-vector machine is proposed. The strategy of linearly decreasing inertia weight is introduced to optimize the state error of the extended Kalman filter algorithm and the measurement noise covariance matrix to achieve accurate monitoring of voltage sags. Extract characteristic quantities such as average value, duration of sag, minimum sag dispersion characteristics, number of sag phases, and flow direction of disturbance energy. As a model training data set, the least-square support-vector machine method optimized based on the improved firefly algorithm is used to create a multi-level classification model of voltage sag source to realize the classification of voltage sag sources. This method fully considers the influence of the limited resources of edge computing equipment on the algorithm, and effectively improves the use of computing resources by improving the optimization algorithm. Simulation and experimental results show that this method is suitable for edge computing equipment to monitor and distinguish voltage sags.

Keywords: Voltage sag; extended Kalman filter; least-square support-vector machine; firefly algorithm; multi-level classification (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/15501329221087055 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:18:y:2022:i:3:p:15501329221087055

DOI: 10.1177/15501329221087055

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:18:y:2022:i:3:p:15501329221087055