EconPapers    
Economics at your fingertips  
 

Near-Optimal Diagnosis System Deployment in Wireless Sensor Networks

Shuo Lian, Jizhong Zhao and Xu Zhao

International Journal of Distributed Sensor Networks, 2013, vol. 9, issue 10, 105430

Abstract: Wireless sensor networks (WSNs) have been extensively applied in many important fields with larger scale and more complex structure. The applications of WSNs are regarded as a sustainable solution to provide ongoing and efficient monitoring services in the real world. When such an application of WSNs faces poor performance or unexpected condition, the administrator needs to deploy a diagnosis system to diagnose the task. One possible way is to transform some original motes as diagnosis motes by using reprogramming technique. However, the challenge is how to achieve best efficiency in the diagnosis nodes selection processing. Moreover, the required network evidence is always distributed in multidimensional data spaces. The existing approaches fail to consider this multidimensional feature of evidence in diagnosis nodes selection problem. To address the above issues, we propose a solution for the multidimensional diagnosis nodes selection problem and give the corresponding upper bound. Lastly our experimental results demonstrated that our approach is scalable and applicable for real WSNs.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1155/2013/105430 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:9:y:2013:i:10:p:105430

DOI: 10.1155/2013/105430

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:9:y:2013:i:10:p:105430