EconPapers    
Economics at your fingertips  
 

An Probability-Based Energy Model on Cache Coherence Protocol with Mobile Sensor Network

Jihe Wang, Bing Guo and Meikang Qiu

International Journal of Distributed Sensor Networks, 2013, vol. 9, issue 4, 362649

Abstract: Mobile sensor networks (MSNs) are widely used in various domains to monitor, record, compute, and interact the information within an environment. To prolong the life time of each node in MSNs, energy model and conservation should be considered carefully when designing the data communication mechanism in the network. The limited battery volume and high workload on channels worsen the life times of the busy nodes. In this paper, we propose a new energy evaluating methodology of packet transmissions in MSNs, which is based on redividing network layers and describing the synchronous data flow with matrix form. We first introduce the cache coherence layer to the protocol stack of MSNs. Then, we use a set of energy probability matrices to describe and calculate the energy consumption of each state in the protocol. After that, based on our energy model, we will give out an energy evaluating method of the MSNs design, which is suitable for measuring and comparing the energy consumption from different implements of hardware/software. Our experimental results show that our approach achieves a precision with less than 2% error and provides a credible quantitative criterion for energy optimization of data communication in MSNs.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1155/2013/362649 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:9:y:2013:i:4:p:362649

DOI: 10.1155/2013/362649

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:9:y:2013:i:4:p:362649