EconPapers    
Economics at your fingertips  
 

Adaptive Multihypothesis Prediction Algorithm for Distributed Compressive Video Sensing

Jinxiu Zhu, Ning Cao and Yu Meng

International Journal of Distributed Sensor Networks, 2013, vol. 9, issue 5, 247931

Abstract: A novel adaptive multihypothesis (MH) prediction algorithm for distributed compressive video sensing (DCVS) is proposed in this paper. In the proposed framework, consistent block-based random measurement for each video frame is adopted at the encoder independently. Meanwhile, a mode decision algorithm is applied in CS-blocks via block-based correlation measurements at the decoder. The inter-frame MH mode is selected for the current block wherein the interframe correlation coefficient value exceeds a predetermined threshold. Otherwise, the intraframe MH mode is worthwhile to be selected. Moreover, the adaptive search window and cross-diamond search algorithms on measurement domain are also incorporated to form the dictionary for MH prediction. Both the temporal and spatial correlations in video signals are exploited to enhance CS recovery to satisfy the best linear combination of hypotheses. The simulation results show that the proposed framework can provide better reconstruction quality than the framework using original MH prediction algorithm, and for sequences with slow motion and relatively simple scene composition, the proposed method shows significant performance gains at low measurement subrate.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1155/2013/247931 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:9:y:2013:i:5:p:247931

DOI: 10.1155/2013/247931

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:9:y:2013:i:5:p:247931