Malware modeling and experimentation through parameterized behavior
Z. Berkay Celik,
Patrick McDaniel and
Thomas Bowen
The Journal of Defense Modeling and Simulation, 2018, vol. 15, issue 1, 31-48
Abstract:
Experimentation is critical to understanding the malware operation and to evaluating potential defenses. However, constructing the controlled environments needed for this experimentation is both time-consuming and error-prone. In this study, we highlight several common mistakes made by researchers and conclude that existing evaluations of malware detection techniques often lack in both flexibility and transparency . For instance, we show that small variations in the malware’s behavioral parameters can have a significant impact on the evaluation results. These variations, if unexplored, may lead to overly optimistic conclusions and detection systems that are ineffective in practice. To overcome these issues, we propose a framework to model malware behavior and guide systematic parameter selection. We evaluate our framework using a synthetic botnet executed within the CyberVAN testbed. Our study is intended to foster critical evaluation of proposed detection techniques and stymie unintentionally erroneous experimentation.
Keywords: Experimentation; malware modeling; simulation (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1548512917721755 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:joudef:v:15:y:2018:i:1:p:31-48
DOI: 10.1177/1548512917721755
Access Statistics for this article
More articles in The Journal of Defense Modeling and Simulation
Bibliographic data for series maintained by SAGE Publications ().