EconPapers    
Economics at your fingertips  
 

Training data augmentation for deep learning radio frequency systems

William H Clark Iv, Steven Hauser, William C Headley and Alan J Michaels

The Journal of Defense Modeling and Simulation, 2021, vol. 18, issue 3, 217-237

Abstract: Applications of machine learning are subject to three major components that contribute to the final performance metrics. Within the category of neural networks, and deep learning specifically, the first two are the architecture for the model being trained and the training approach used. This work focuses on the third component, the data used during training. The primary questions that arise are “what is in the data†and “what within the data matters?†looking into the radio frequency machine learning (RFML) field of automatic modulation classification (AMC) as an example of a tool used for situational awareness, the use of synthetic, captured, and augmented data are examined and compared to provide insights about the quantity and quality of the available data necessary to achieve desired performance levels. Three questions are discussed within this work: (1) how useful a synthetically trained system is expected to be when deployed without considering the environment within the synthesis, (2) how can augmentation be leveraged within the RFML domain, and, lastly, (3) what impact knowledge of degradations to the signal caused by the transmission channel contributes to the performance of a system. In general, the examined data types each make useful contributions to a final application, but captured data germane to the intended use case will always provide more significant information and enable the greatest performance. Despite the benefit of captured data, the difficulties and costs that arise from live collection often make the quantity of data needed to achieve peak performance impractical. This paper helps quantify the balance between real and synthetic data, offering concrete examples where training data is parametrically varied in size and source.

Keywords: RF; RFML; simulation; augmentation; captured data; machine learning; neural networks; deep learning; data quality; data quantity (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1548512921991245 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:joudef:v:18:y:2021:i:3:p:217-237

DOI: 10.1177/1548512921991245

Access Statistics for this article

More articles in The Journal of Defense Modeling and Simulation
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:joudef:v:18:y:2021:i:3:p:217-237