Estimation of cyber network risk using rare event simulation
Alexander L Krall,
Michael E Kuhl and
Shanchieh J Yang
The Journal of Defense Modeling and Simulation, 2022, vol. 19, issue 1, 37-55
Abstract:
Inherent vulnerabilities in a cyber network’s constituent machine services can be exploited by malicious agents. As a result, the machines on any network are at risk. Security specialists seek to mitigate the risk of intrusion events through network reconfiguration and defense. When dealing with rare cyber events, high-quality risk estimates using standard simulation approaches may be unattainable, or have significant attached uncertainty, even with a large computational simulation budget. To address this issue, an efficient rare event simulation modeling and analysis technique, namely, importance sampling for cyber networks, is developed. The importance sampling method parametrically amplifies certain aspects of the network in order to cause a rare event to happen more frequently. Output collected under these amplified conditions is then scaled back into the context of the original network to provide meaningful statistical inferences. The importance sampling methodology is tailored to cyber network attacks and takes the attacker’s successes and failures as well as the attacker’s targeting choices into account. The methodology is shown to produce estimates of higher quality than standard simulation with greater computational efficiency.
Keywords: Cyber security; network risk; rare event simulation; importance sampling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1548512920934551 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:joudef:v:19:y:2022:i:1:p:37-55
DOI: 10.1177/1548512920934551
Access Statistics for this article
More articles in The Journal of Defense Modeling and Simulation
Bibliographic data for series maintained by SAGE Publications ().