EconPapers    
Economics at your fingertips  
 

Can machine learning be used to forecast the future uncertainty of military teams?

Ronald H Stevens and Trysha L Galloway

The Journal of Defense Modeling and Simulation, 2022, vol. 19, issue 2, 145-158

Abstract: Uncertainty is a fundamental property of neural computation that becomes amplified when sensory information does not match a person’s expectations of the world. Uncertainty and hesitation are often early indicators of potential disruption, and the ability to rapidly measure uncertainty would have implications for future educational and training efforts by targeting reflective discussions about past actions, supporting in-progress corrections, and generating forecasts about future disruptions. An approach is described combining neurodynamics and machine learning to provide quantitative measures of uncertainty. Models of neurodynamic information derived from electroencephalogram (EEG) brainwaves have provided detailed neurodynamic histories of US Navy submarine navigation team members. Persistent periods (25–30 s) of neurodynamic information were seen as discrete peaks when establishing the submarine’s position and were identified as periods of uncertainty by an artificial intelligence (AI) system previously trained to recognize the frequency, magnitude, and duration of different patterns of uncertainty in healthcare and student teams. Transition matrices of neural network states closely predicted the future uncertainty of the navigation team during the three minutes prior to a grounding event. These studies suggest that the dynamics of uncertainty may have common characteristics across teams and tasks and that forecasts of their short-term evolution can be estimated.

Keywords: Artificial intelligence; EEG; team neurodynamics; information; machine learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1548512921999112 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:joudef:v:19:y:2022:i:2:p:145-158

DOI: 10.1177/1548512921999112

Access Statistics for this article

More articles in The Journal of Defense Modeling and Simulation
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:joudef:v:19:y:2022:i:2:p:145-158