Examination of a non-orthogonal multiple access scheme for next generation wireless networks
Ravi Shankar
The Journal of Defense Modeling and Simulation, 2022, vol. 19, issue 3, 453-465
Abstract:
Non-orthogonal multiple access (NOMA) is an important technique that enables fifth-generation (5G) wireless systems to satisfy the heterogeneous requirements of enhanced fairness, huge connectivity, high performance, low latency, and high reliability. In this work, the NOMA technique for 5G wireless communication is investigated, and considering user fairness limitations, the channel capacity has been optimized. Also, bandwidth efficiency (BE) is examined and the relationship between BE and energy efficiency (EE) is derived. Simulation results show that without wasting power the near user gets preference in power allocation when the target rate is greater than 6.4 bps/Hz. Also, when the target rate R * > 6.4 bps/Hz, the outage performance of the near user will improve and the performance of the far user will remain the same. Also, it is demonstrated that cooperative NOMA outperforms all other techniques. Simulation outcomes confirm that NOMA performs better than conventional multiple access techniques in terms of EE and BE.
Keywords: Multiple access; fifth-generation wireless systems; non-orthogonal multiple access; bandwidth efficiency; energy efficiency; channel state information (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1548512920951277 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:joudef:v:19:y:2022:i:3:p:453-465
DOI: 10.1177/1548512920951277
Access Statistics for this article
More articles in The Journal of Defense Modeling and Simulation
Bibliographic data for series maintained by SAGE Publications ().