Actor–critic-based decision-making method for the artificial intelligence commander in tactical wargames
Junfeng Zhang and
Qing Xue
The Journal of Defense Modeling and Simulation, 2022, vol. 19, issue 3, 467-480
Abstract:
In a tactical wargame, the decisions of the artificial intelligence (AI) commander are critical to the final combat result. Due to the existence of fog-of-war, AI commanders are faced with unknown and invisible information on the battlefield and lack of understanding of the situation, and it is difficult to make appropriate tactical strategies. The traditional knowledge rule-based decision-making method lacks flexibility and autonomy. How to make flexible and autonomous decision-making when facing complex battlefield situations is a difficult problem. This paper aims to solve the decision-making problem of the AI commander by using the deep reinforcement learning (DRL) method. We develop a tactical wargame as the research environment, which contains built-in script AI and supports the machine–machine combat mode. On this basis, an end-to-end actor–critic framework for commander decision making based on the convolutional neural network is designed to represent the battlefield situation and the reinforcement learning method is used to try different tactical strategies. Finally, we carry out a combat experiment between a DRL-based agent and a rule-based agent in a jungle terrain scenario. The result shows that the AI commander who adopts the actor–critic method successfully learns how to get a higher score in the tactical wargame, and the DRL-based agent has a higher winning ratio than the rule-based agent.
Keywords: Actor–critic; artificial intelligence agent; deep reinforcement learning; decision-making (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1548512920954542 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:joudef:v:19:y:2022:i:3:p:467-480
DOI: 10.1177/1548512920954542
Access Statistics for this article
More articles in The Journal of Defense Modeling and Simulation
Bibliographic data for series maintained by SAGE Publications ().