EconPapers    
Economics at your fingertips  
 

Channel capacity analysis of non-orthogonal multiple access and massive multiple-input multiple-output wireless communication networks considering perfect and imperfect channel state information

Ravi Shankar, Shovon Nandi and Ajay Rupani

The Journal of Defense Modeling and Simulation, 2022, vol. 19, issue 4, 771-781

Abstract: In this paper, we investigate the non-orthogonal multiple access (NOMA) and massive multiple-input multiple-output (M-MIMO) techniques and through simulation, and a comparison is given between the NOMA and orthogonal multiple access techniques. Integrating NOMA with M-MIMO is a very challenging task. In this paper, for a single-cell system, NOMA is integrated with a M-MIMO system for better spectral and energy efficiency. Investigation of the multiple user gain is the focus of this work because the multiple user gain supports simultaneous transmission of multiple users in the case of the M-MIMO system. In this way, the M-MIMO will provide a 100 times channel capacity increase, which results in very high data transmission rate. In the modern communication system, achieving multiple user gain is a very difficult task when channel estimation error is present. The performance of the orthogonal multiple access as well as NOMA system significantly reduced in the presence of channel estimation error. However, most of the current schemes do not work well with imperfect perfect channel state information conditions. Simulation results closely agree with the theoretical outcomes.

Keywords: Massive multiple-input multiple-output; non-orthogonal multiple access; channel estimation error; wireless communication; orthogonal multiple access (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/15485129211000139 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:joudef:v:19:y:2022:i:4:p:771-781

DOI: 10.1177/15485129211000139

Access Statistics for this article

More articles in The Journal of Defense Modeling and Simulation
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:joudef:v:19:y:2022:i:4:p:771-781