Analysis of NOMA-OFDM 5G wireless system using deep neural network
Sharnil Pandya,
Manoj Ashok Wakchaure,
Ravi Shankar and
Jagadeeswara Rao Annam
The Journal of Defense Modeling and Simulation, 2022, vol. 19, issue 4, 799-806
Abstract:
In this work, a multiple user deep neural network-based non-orthogonal multiple access (NOMA) receiver is investigated considering channel estimation error. The decoding of the symbol in the case of the NOMA system follows the sequential order and decoding accuracy depends on the detection of the previous user. Without estimating the throughput, a deep neural network-based NOMA orthogonal frequency division multiplexing (OFDM) system is proposed to decode the symbols from the users. Firstly, the deep neural network is trained. Secondly, the data are trained and lastly, the data are tested for various users. In this work, for various values of signal to noise ratio, the performance of the deep neural network is investigated, and the bit error rate (BER) is calculated on a per subcarrier basis. The simulation results show that the deep neural network is more robust to symbol distortion due to inter-symbol information and will obtain knowledge of the channel state information using data testing.
Keywords: NOMA; OFDM; BER; signal to noise ratio; successive interference cancellation; deep neural network (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1548512921999108 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:joudef:v:19:y:2022:i:4:p:799-806
DOI: 10.1177/1548512921999108
Access Statistics for this article
More articles in The Journal of Defense Modeling and Simulation
Bibliographic data for series maintained by SAGE Publications ().