EconPapers    
Economics at your fingertips  
 

Optimizing network microsegmentation policy for cyber resilience

Steven Noel, Vipin Swarup and Karin Johnsgard

The Journal of Defense Modeling and Simulation, 2023, vol. 20, issue 1, 57-79

Abstract: This paper describes an approach for improving cyber resilience through the synthesis of optimal microsegmentation policy for a network. By leveraging microsegmentation security architecture, we can reason about fine-grained policy rules that enforce access for given combinations of source address, destination address, destination port, and protocol. Our approach determines microsegmentation policy rules that limit adversarial movement within a network according to assumed attack scenarios and mission availability needs. For this problem, we formulate a novel optimization objective function that balances cyberattack risks against accessibility to critical network resources. Given the application of a particular set of policy rules as a candidate optimal solution, this objective function estimates the adversary effort for carrying out a particular attack scenario, which it balances against the extent to which the solution restricts access to mission-critical services. We then apply artificial intelligence techniques (evolutionary programming) to learn microsegmentation policy rules that optimize this objective function.

Keywords: Security policy optimization; attack graphs; genetic algorithms (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/15485129211051386 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:joudef:v:20:y:2023:i:1:p:57-79

DOI: 10.1177/15485129211051386

Access Statistics for this article

More articles in The Journal of Defense Modeling and Simulation
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:joudef:v:20:y:2023:i:1:p:57-79