EconPapers    
Economics at your fingertips  
 

Detection and defense of cyberattacks on the machine learning control of robotic systems

George W Clark, Todd R Andel, J Todd McDonald, Tom Johnsten and Tom Thomas

The Journal of Defense Modeling and Simulation, 2024, vol. 21, issue 2, 181-203

Abstract: Robotic systems are no longer simply built and designed to perform sequential repetitive tasks primarily in a static manufacturing environment. Systems such as autonomous vehicles make use of intricate machine learning algorithms to adapt their behavior to dynamic conditions in their operating environment. These machine learning algorithms provide an additional attack surface for an adversary to exploit in order to perform a cyberattack. Since an attack on robotic systems such as autonomous vehicles have the potential to cause great damage and harm to humans, it is essential that detection and defenses of these attacks be explored. This paper discusses the plausibility of direct and indirect cyberattacks on a machine learning model through the use of a virtual autonomous vehicle operating in a simulation environment using a machine learning model for control. Using this vehicle, this paper proposes various methods of detection of cyberattacks on its machine learning model and discusses possible defense mechanisms to prevent such attacks.

Keywords: Cybersecurity; machine learning; robotics; artificial intelligence; simulation (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/15485129211043874 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:joudef:v:21:y:2024:i:2:p:181-203

DOI: 10.1177/15485129211043874

Access Statistics for this article

More articles in The Journal of Defense Modeling and Simulation
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:joudef:v:21:y:2024:i:2:p:181-203