EconPapers    
Economics at your fingertips  
 

An experiment in tactical wargaming with platforms enabled by artificial intelligence

Danielle C Tarraf, J Michael Gilmore, D Sean Barnett, Scott Boston, David R Frelinger, Daniel Gonzales, Alexander C Hou and Peter Whitehead

The Journal of Defense Modeling and Simulation, 2025, vol. 22, issue 1, 59-76

Abstract: In this report, researchers experimented with how postulated artificial intelligence/machine learning (AI/ML) capabilities could be incorporated into a wargame. We modified and augmented the rules and engagement statistics used in a commercial tabletop wargame to enable (1) remotely operated and fully autonomous combat vehicles and (2) vehicles with AI/ML-enabled situational awareness to show how the two types of vehicles would perform in company-level engagement between Blue (US) and Red (Russian) forces. The augmented rules and statistics we developed for this wargame were based in part on the US Army’s evolving plans for developing and fielding robotic and AI/ML-enabled weapon and other systems. However, we also portrayed combat vehicles with the capability to autonomously detect, identify, and engage targets without human intervention, which the Army does not presently envision. The rules we developed sought to realistically portray the capabilities and limitations of AI/ML-enabled systems, including their vulnerability to selected enemy countermeasures, such as jamming. Future work could improve the realism of both the gameplay and representation of AI/ML-enabled systems, thereby providing useful information to the acquisition and operational communities in the US Department of Defense.

Keywords: Artificial intelligence; machine learning; wargame; tactical; Army; autonomous; remotely operated; vehicle (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/15485129221097103 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:joudef:v:22:y:2025:i:1:p:59-76

DOI: 10.1177/15485129221097103

Access Statistics for this article

More articles in The Journal of Defense Modeling and Simulation
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:joudef:v:22:y:2025:i:1:p:59-76