A Comparison of Different Data-driven Procedures to Determine the Bunching Window
Vincent Dekker and
Karsten Schweikert
Public Finance Review, 2021, vol. 49, issue 2, 262-293
Abstract:
In this article, we compare three data-driven procedures to determine the bunching window in a Monte Carlo simulation of taxable income. Following the standard approach in the empirical bunching literature, we fit a flexible polynomial model to a simulated income distribution, excluding data in a range around a prespecified kink. First, we propose to implement methods for the estimation of structural breaks to determine a bunching regime around the kink. A second procedure is based on Cook’s distances aiming to identify outlier observations. Finally, we apply the iterative counterfactual procedure proposed by Bosch, Dekker, and Strohmaier which evaluates polynomial counterfactual models for all possible bunching windows. While our simulation results show that all three procedures are fairly accurate, the iterative counterfactual procedure is the preferred method to detect the bunching window when no prior information about the true size of the bunching window is available.
Keywords: bunching window; Cook’s distances; Monte Carlo simulation; structural breaks; taxable income (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1091142121993055 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:pubfin:v:49:y:2021:i:2:p:262-293
DOI: 10.1177/1091142121993055
Access Statistics for this article
More articles in Public Finance Review
Bibliographic data for series maintained by SAGE Publications ().