Storage battery remaining useful life prognosis using improved unscented particle filter
Limin Li,
Zhongsheng Wang and
Hongkai Jiang
Journal of Risk and Reliability, 2015, vol. 229, issue 1, 52-61
Abstract:
Storage battery is one of the most important power sources in portable devices, marine systems, automotive vehicles, aerospace systems, and so on. For this kind of battery, it is essential to prognose its remaining useful life before its end of life, which would reduce some unnecessary sudden disasters caused by battery failure. In this article, we propose an improved unscented particle filter method for prognosing the remaining useful life of storage battery, in which the sigma samples of unscented transformation in traditional unscented particle filter are generated by singular value decomposition, and then, those sigma points are propagated by the standard unscented Kalman filter to generate a sophisticated proposal distribution. When both improved unscented particle filter and unscented particle filter methods were used for prognosing the remaining useful life of storage battery, it shows that the performance of improved unscented particle filter is better than unscented particle filter; the proposed method is more robust in remaining useful life prognosis procedure.
Keywords: Remaining useful life; unscented particle filter; improved unscented particle filter; singular value decomposition (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X14550662 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:229:y:2015:i:1:p:52-61
DOI: 10.1177/1748006X14550662
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().