Bearing fault diagnosis based on a new acoustic emission sensor technique
Brandon Van Hecke,
Yongzhi Qu and
David He
Journal of Risk and Reliability, 2015, vol. 229, issue 2, 105-118
Abstract:
The diagnosis of bearing health by quantifying acoustic emission data has been an area of interest for recent years due to the numerous advantages over vibration-based techniques. However, most acoustic emission–based methodologies to date are data-driven technologies. This research takes a novel approach combining a heterodyne-based frequency reduction technique, time synchronous resampling, and spectral averaging to process acoustic emission signals and extract condition indicators for bearing fault diagnosis. The heterodyne technique allows the acoustic emission signal frequency to be shifted from several megahertz to less than 50 kHz, which is comparable to that of vibration-based techniques. Then, the digitized signal is band-pass filtered to retain the information associated with the bearing defects. Finally, the tachometer signal is used to time synchronously resample the acoustic emission data, allowing the computation of a spectral average which in turn enables the extraction and evaluation of condition indicators for bearing fault diagnosis. The presented technique is validated using the acoustic emission signals of seeded fault steel bearings on a bearing test rig. The result is an effective acoustic emission–based approach validated to diagnose all four fault types: inner race, outer race, ball, and cage.
Keywords: Acoustic emission sensor; bearing; fault diagnosis (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X14558900 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:229:y:2015:i:2:p:105-118
DOI: 10.1177/1748006X14558900
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().