Fault diagnosis for the complex manufacturing system
Dang Trinh Nguyen,
Quoc Bao Duong,
Eric Zamai and
Muhammad Kashif Shahzad
Journal of Risk and Reliability, 2016, vol. 230, issue 2, 178-194
Abstract:
Present manufacturing systems are equipped with sensors that provide a basis for real-time monitoring and diagnosis; however, placement of these sensors is constrained by the the functions that they perform and the system’s structure. Moreover, sensors cannot be placed across all components in the equipment due to significant data challenges. This results in non-observable components, which limit our ability to support effective real-time monitoring and fault diagnosis initiatives. Consequently, product quality drifts found during inspection often result in unscheduled breakdown of all equipment involved in respective production operation. This situation becomes more complex for automated manufacturing lines, where success depends on our ability to capitalize maximum production capacities. This paper proposes a methodology that exploits historical data over unobserved equipment components to reduce the search space of potential faulty components, followed by a more accurate diagnosis of failures and causes. The purpose is to improve the effectiveness and efficiency of both the real-time monitoring of potential faulty components and the diagnosis of causes. In the proposed approach, we use a logical diagnosis approach to reduce the search space of suspected equipment in the production flow, which is then formulated as a Bayesian network. The proposed approach computes the risk priority for suspected equipment with corresponding factors (such as human factor and recipe), using joint and conditional probabilities. The objective is to quickly and accurately localize the possible fault origins in real-time and support effective corrective maintenance decisions. The key advantages offered by this approach are: (i) reduced unscheduled equipment breakdown duration, and (ii) stable production capacities, required for success in highly competitive and automated manufacturing systems. Moreover, this is a generic methodology and can be deployed on fully or semi-automated manufacturing systems.
Keywords: Fault diagnosis; logical diagnosis; Bayesian network; automated manufacturing systems (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X15623089 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:230:y:2016:i:2:p:178-194
DOI: 10.1177/1748006X15623089
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().