Bearing fault diagnosis of a wind turbine based on variational mode decomposition and permutation entropy
Xueli An and
Luoping Pan
Journal of Risk and Reliability, 2017, vol. 231, issue 2, 200-206
Abstract:
Variational mode decomposition is a new signal decomposition method, which can process non-linear and non-stationary signals. It can overcome the problems of mode mixing and compensate for the shortcomings in empirical mode decomposition. Permutation entropy is a method which can detect the randomness and kinetic mutation behavior of a time series. It can be considered for use in fault diagnosis. The complexity of wind power generation systems means that the randomness and kinetic mutation behavior of their vibration signals are displayed at different scales. Multi-scale permutation entropy analysis is therefore needed for such vibration signals. This research investigated a method based on variational mode decomposition and permutation entropy for the fault diagnosis of a wind turbine roller bearing. Variational mode decomposition was adopted to decompose the bearing vibration signal into its constituent components. The components containing key fault information were selected for the extraction of their permutation entropy. This entropy was used as a bearing fault characteristic value. The nearest neighbor algorithm was employed as a classifier to identify faults in a roller bearing. The experimental data showed that the proposed method can be applied to wind turbine roller bearing fault diagnosis.
Keywords: Variational mode decomposition; permutation entropy; wind turbine; spherical roller bearing; fault diagnosis (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X17693492 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:231:y:2017:i:2:p:200-206
DOI: 10.1177/1748006X17693492
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().