Optimizing preventive maintenance policy: A data-driven application for a light rail braking system
Francesco Corman,
Sander Kraijema,
Milinko Godjevac and
Gabriel Lodewijks
Journal of Risk and Reliability, 2017, vol. 231, issue 5, 534-545
Abstract:
This article presents a case study determining the optimal preventive maintenance policy for a light rail rolling stock system in terms of reliability, availability, and maintenance costs. The maintenance policy defines one of the three predefined preventive maintenance actions at fixed time-based intervals for each of the subsystems of the braking system. Based on work, maintenance, and failure data, we model the reliability degradation of the system and its subsystems under the current maintenance policy by a Weibull distribution. We then analytically determine the relation between reliability, availability, and maintenance costs. We validate the model against recorded reliability and availability and get further insights by a dedicated sensitivity analysis. The model is then used in a sequential optimization framework determining preventive maintenance intervals to improve on the key performance indicators. We show the potential of data-driven modelling to determine optimal maintenance policy: same system availability and reliability can be achieved with 30% maintenance cost reduction, by prolonging the intervals and re-grouping maintenance actions.
Keywords: Maintenance modelling; failure modelling; reliability; availability; rolling stock (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X17712662 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:231:y:2017:i:5:p:534-545
DOI: 10.1177/1748006X17712662
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().