Benefit and customer demand approach for maintenance optimization of complex systems using Bayesian networks
El Hassene Ait Mokhtar,
Radouane Laggoune and
Alaa Chateauneuf
Journal of Risk and Reliability, 2017, vol. 231, issue 5, 558-572
Abstract:
The satisfaction of client needs is the goal of most of the industrial systems, which can be achieved by appropriate life-cycle management. When it concerns complex real-world systems, the difficulty of managing their life-cycle increases with increasing of the links and interactions between the system components and between the system and its environment. Therefore, the need of addressing a complete and realistic maintenance planning approach to face these difficulties is crucial. This article presents a methodology for maintenance optimization of complex systems using Bayesian networks. In this methodology, the objective function, which aims at maximizing the system benefit, allows conciliating between two contradictory objectives: reducing the maintenance costs and reaching an availability target fixed according to the customer demand. The Bayesian networks are used to take into account the system interactions, while the maintenance policy, which is based on the imperfect preventive maintenance and considers several efficiency levels, is used to build a realistic maintenance planning model. An application to a water supply system is included to illustrate the benefit and the effectiveness of the proposed approach.
Keywords: Maintenance optimization; imperfect preventive maintenance; Bayesian networks; complex systems; market needs (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X17716314 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:231:y:2017:i:5:p:558-572
DOI: 10.1177/1748006X17716314
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().