Correlated reliability and an application: Propulsive landing on Mars
Hüseyin Sarper
Journal of Risk and Reliability, 2019, vol. 233, issue 5, 826-846
Abstract:
This article discusses reliability of landers and provides a review and examples of correlated reliability. Examples are cited to show generally beneficial effects of correlation in system reliability. Then, reliabilities of two near future landing systems are studied using two analytical (Downton, and Marshall & Olkin) bivariate exponential distributions and two simulation methods that incorporate correlation in reliability calculations. Both landing systems are composed of correlated two-unit subsystems. Numerical examples show mean system life, standard deviation of the system life, mean system life confidence interval, and reliability for each lander’s propulsive descent. Both simulation method results are in between the results obtained from the two analytical methods and Downton’s method yields the most conservative reliability. This article also shows how the Downton method–based reliability value can be predicted as a function of the reliabilities obtained from the other three methods. An up-to-date literature review of all related topics is also provided.
Keywords: Bivariate exponential distribution; correlated reliability; reliability modeling/simulation; aerospace risk; aerospace systems reliability; risk analysis; environmental risk (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X18822241 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:233:y:2019:i:5:p:826-846
DOI: 10.1177/1748006X18822241
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().