Complementary ensemble local means decomposition method and its application to rolling element bearings fault diagnosis
Yao Cheng and
Dong Zou
Journal of Risk and Reliability, 2019, vol. 233, issue 5, 868-880
Abstract:
Local means decomposition is an adaptive and nonparametric time–frequency decomposition method for nonstationary and nonlinear signals. However, in practice, local means decomposition is susceptible to mode mixing phenomena and produces different scale oscillations in one mode or similar scale oscillations in different modes, rendering the decomposition results difficult to interpret in terms of physical meansing. The noise-assisted ensemble local means decomposition method not only effectively resolved mode mixing but also generated a new problem, which tolerates residual noise in signal reconstruction. Targeting these shortcomings, this article proposes complementary ensemble local means decomposition, a novel noise-assisted time–frequency analysis method. First, an ensemble of white noise is added to the original signal via complementary positive and negative pairs. Second, local means decomposition is applied to decompose the noisy signals into a series of product functions, and the final results are obtained by averaging. The simulation results confirm that complementary ensemble local means decomposition offers an innovative improvement over ensemble local means decomposition in terms of eliminating residual noise. The superiority of the proposed method was further validated on fault signals obtained from faulty railway bearings (rolling element and outer race fault signals).
Keywords: Local means decomposition; ensemble empirical mode decomposition; time–frequency analysis; rolling element bearing; fault diagnosis (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X19838129 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:233:y:2019:i:5:p:868-880
DOI: 10.1177/1748006X19838129
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().