An adaptive particle swarm optimization method for multi-objective system reliability optimization
Mohamed Arezki Mellal and
Enrico Zio
Journal of Risk and Reliability, 2019, vol. 233, issue 6, 990-1001
Abstract:
Multi-objective system reliability optimization has attracted the attention of several researchers, due to its importance in industry. In practice, the optimization regards multiple objectives, for example, maximize the reliability, minimize the cost, weight, and volume. In this article, an adaptive particle swarm optimization is presented for multi-objective system reliability optimization. The approach uses a Lévy flight for some particles of the swarm, for avoiding local optima and insuring diversity in the exploration of the search space. The multi-objective problem is converted to a single-objective problem by resorting to the weighted-sum method and a penalty function is implemented to handle the constraints. Nine numerical case studies are presented as benchmark problems for comparison; the results show that the proposed approach has superior performance than a standard particle swarm optimization.
Keywords: Multi-objective optimization; reliability–redundancy optimization; adaptive particle swarm optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X19852814 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:233:y:2019:i:6:p:990-1001
DOI: 10.1177/1748006X19852814
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().