EconPapers    
Economics at your fingertips  
 

Minimal path set importance in complex systems

Sudhanshu Aggarwal

Journal of Risk and Reliability, 2021, vol. 235, issue 2, 201-208

Abstract: To find the best mode for system design in reliability optimization, risk engineers around the world use the importance measure as a basic tool. This paper introduces a new importance measure taking into account minimal path sets of the system. It helps to optimize the system designs that occur in many situations. For instance, this importance measure can be used (a) in identifying important components of any complex system and (b) solving constrained redundancy optimization problems. This is illustrated by providing two heuristic algorithms. In the first algorithm, this measure is used to find important components of any complex system ensuring improved system reliability. The second algorithm is used to solve a constrained redundancy optimization problem for any general coherent system giving (near) optimal solutions in 1-neighborhood. The results show that the new importance measure is easily applicable, unlike the classical ones. Hence, it serves as a very useful tool in measuring the important component(s) and solving constrained redundancy optimization problems of complex systems. Thus, it can be considered as a good alternative to the existing importance measures.

Keywords: Complex system; heuristic algorithm; constrained redundancy optimization; minimal path set importance; component importance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X20962668 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:235:y:2021:i:2:p:201-208

DOI: 10.1177/1748006X20962668

Access Statistics for this article

More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:risrel:v:235:y:2021:i:2:p:201-208