A Bayesian Belief Network method for bridge deterioration detection
Matteo Vagnoli,
Rasa Remenyte-Prescott and
John Andrews
Journal of Risk and Reliability, 2021, vol. 235, issue 3, 338-355
Abstract:
Bridges are one of the most important assets of transportation networks. A closure of a bridge can increase the vulnerability of the geographic area served by such networks, as it reduces the number of available routes. Condition monitoring and deterioration detection methods can be used to monitor the health state of a bridge and enable detection of early signs of deterioration. In this paper, a novel Bayesian Belief Network (BBN) methodology for bridge deterioration detection is proposed. A method to build a BBN structure and to define the Conditional Probability Tables (CPTs) is presented first. Then evidence of the bridge behaviour (such as bridge displacement or acceleration due to traffic) is used as an input to the BBN model, the probability of the health state of whole bridge and its elements is updated and the levels of deterioration are detected. The methodology is illustrated using a Finite Element Model (FEM) of a steel truss bridge, and for an in-field post-tensioned concrete bridge.
Keywords: Bayesian Belief Network; bridge deterioration; detection and diagnostics; structural health monitoring (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X20979225 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:235:y:2021:i:3:p:338-355
DOI: 10.1177/1748006X20979225
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().