A risk assessment methodology of aluminum dust explosion for polishing process based on laboratory tests
Haipu Bi,
Xiaolong Xie,
Kaimin Wang,
Yujie Cao and
Hui Shao
Journal of Risk and Reliability, 2021, vol. 235, issue 4, 627-636
Abstract:
The secondary dust explosion ignited by the primary explosion energy often causes greater damage to the just destroyed carrier. Therefore, the study of explosion risk as well as the risk reduction effect with suppression is key guard against the secondary and derivative explosions. A novel risk assessment methodology is presented based on Monte Carlo theory for numerically fitting pressure’s uncertainty changes and Crystal ball simulation for calculating explosion risk and its distribution probability of hazardous explosive dust. Taking the aluminum dust of a polishing process as an example, the fitted results show that the tested explosion pressure in laboratory presents the shape of lognormal distribution with average pressure of 0.27 MPa on the condition of 500 g/m 3 aluminum dust with median particle diameter at 35 μm. The simulated results show that the risk possibility of myringorupture injury, pneumorrhagia injury, and structure damage all approaches 100% because of the high explosion pressure considering the potential percentage of injury or damage at 50%. However, the risk possibility reduces to 14.27%, 0.13%, and 42.05% with suppressants of ammonium dihydrogen phosphate at 10%, respectively. The proposed method of risk assessment for dust explosion and its suppression provides scientific basis for strategy optimization of dust explosion protection and safe production of fine explosive dust related industry.
Keywords: Dust explosion; fine aluminum dust; explosion pressure; numerical fitting and simulation; risk assessment methodology (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X20987377 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:235:y:2021:i:4:p:627-636
DOI: 10.1177/1748006X20987377
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().