EconPapers    
Economics at your fingertips  
 

Reliability optimization design of deformation of CNC lathe spindle considering thermal effect

Haiyang Liu, Yimin Zhang, Changyou Li and Jianguo Gu

Journal of Risk and Reliability, 2021, vol. 235, issue 5, 769-782

Abstract: Angular contact ball bearings are widely used in the field of rotating machinery due to their obvious advantages such as relatively good positioning accuracy, high speed rotating performance and low cost, which have already become the most important transmission components. The heterogeneous thermal deformation caused by the high speed effect of bearing parts will lead to excessive noise and even gluing, which can further significantly reduce the machining accuracy of machine tool. Therefore, it is vital to improve the deformation resisting capability and operational reliability of the whole system. For this purpose, this paper presents a reliability model for computerized numerical control (CNC) lathe spindle by considering thermal effect. A five-degree-of-freedom quasi-static model considering thermal deformation is firstly proposed to calculate contact load and contact angle. Then the transient thermal network method is used to solve the temperature value of multi-node spindle-bearing system, and the validity of the proposed model is verified by experiments at different speeds. Next the modified first-order and second-moment method (FOSM) is used to calculate the reliability and reliability sensitivity of CNC lathe spindle deformation model considering thermal effect. Finally, the constrained nonlinear optimization method for the reliability model is proposed and applied to CNC lathe spindle. The results show that the reliability of the optimized model is significantly improved and the reliability robustness is enhanced.

Keywords: Computerized numerical control lathe; spindle; angular contact ball bearing; transient thermal network; reliability; optimization design (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X21995380 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:235:y:2021:i:5:p:769-782

DOI: 10.1177/1748006X21995380

Access Statistics for this article

More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:risrel:v:235:y:2021:i:5:p:769-782