EconPapers    
Economics at your fingertips  
 

Early fault diagnosis of ball screws based on 1-D convolution neural network and orthogonal design

Chen Yin, Yulin Wang, Yan He, Lu Liu, Yan Wang and Guannan Yue

Journal of Risk and Reliability, 2021, vol. 235, issue 5, 783-797

Abstract: Ball screws, the most frequently used mechanical components to transform rotary motion into linear motion, can directly affect the precision and service life of engineering machines. Once the efficiency and accuracy of ball screws degrades, the performance and safety of machines are hard to guarantee. Conventional fault diagnosis researches of ball screws are mainly focused on ordinary faults such as preload loss and wear, and lack of the researches on early faults such as lubrication degradation which may progress into the ordinary faults. Additionally, the fault diagnosis models proposed in previous studies divide the fault diagnosis into two separated stages: feature extraction and fault classification, which prevents the usage for real-time applications. The specifically designed algorithm in features extraction stage may be also not workable on other objects. To tackle these drawbacks, this paper proposes a highly accurate early fault diagnosis model of ball screws based on a state-of-the-art deep learning technique, called One-Dimensional Convolutional Neural Network (1-D CNN). Experiments simulating the lubrication degradation of ball screws are specially designed for the early fault diagnosis of the ball screws. Moreover, a concise and efficient approach based on orthogonal design is exploited to scientifically obtain the optimal parameters of the 1-D CNN. The results of a case study verify the superiority of the proposed method in establishing a highly accurate 1-D CNN based fault diagnosis model.

Keywords: Early fault diagnosis; convolution neural network; orthogonal design; ball screw; deep learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X21992886 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:235:y:2021:i:5:p:783-797

DOI: 10.1177/1748006X21992886

Access Statistics for this article

More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:risrel:v:235:y:2021:i:5:p:783-797