Semantic segmentation model for crack images from concrete bridges for mobile devices
Enrique Lopez Droguett,
Juan Tapia,
Claudio Yanez and
Ruben Boroschek
Journal of Risk and Reliability, 2022, vol. 236, issue 4, 570-583
Abstract:
Computer vision algorithms are powerful techniques that can be used for remotely monitoring and inspecting civil structures. Detecting and segmenting cracks in images of concrete bridges can provide useful information related to the health of the structure. There are several states of the art methods based on Deep Learning that have been used for segmentation tasks. However, most of them require a large number of parameters that limits their use in mobile device applications. Here, we propose a DenseNet architecture with only 13 layers with one feature extractor stage and two datapaths. Implementations of state of the art semantic segmentation models are also tested. The proposed model achieves better results than standard algorithms with only a fraction of the parameters making it suitable for developing mobile device applications for bridge structure monitoring. As an additional contribution, two new databases for semantic segmentation of cracks are presented. These databases are used to test all the algorithms in this work and will be available upon request. Additional experiments using a public database are also performed for the sake of comparison. The best results are obtained using the proposed DenseNet-13 architecture with only 350,000 parameters achieving an Intersection Over Union of 94.51% for crack semantic segmentation.
Keywords: Concrete bridge; crack detection; segmentation; deep learning; structural integrity (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X20965111 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:236:y:2022:i:4:p:570-583
DOI: 10.1177/1748006X20965111
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().