EconPapers    
Economics at your fingertips  
 

Dynamic and adaptive grouping maintenance strategies: New scalable optimization algorithms

Maria Hanini, Selma Khebbache, Laurent Bouillaut and Makhlouf Hadji

Journal of Risk and Reliability, 2022, vol. 236, issue 5, 647-660

Abstract: This paper focuses on new efficient and adaptive optimization algorithms to cope with the maintenance grouping problem for series, parallel, and complex systems. We propose a Particle Swarm Optimization approach to cope with small and medium problem sizes, and that will be used to benchmark existing heuristic solutions such as Genetic Algorithms. To address scalability and adaptability issues, we propose a new dynamic optimization algorithm based on a clustering technique. This clustering-based solution is formulated using an Integer Linear Programing approach to guarantee the convergence to global optimal solutions of the considered problem. We show the performance of the proposed approaches with a clear advantage to the clustering-based algorithm that we recommend for large industrial systems.

Keywords: Adaptive maintenance optimization; constrained-clustering; dynamic grouping maintenance; integer linear programing; meta-heuristics optimization (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X211049924 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:236:y:2022:i:5:p:647-660

DOI: 10.1177/1748006X211049924

Access Statistics for this article

More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:risrel:v:236:y:2022:i:5:p:647-660