EconPapers    
Economics at your fingertips  
 

Operational safety of automated and human driving in mixed traffic environments: A perspective of car-following behavior

Tao Li, Xu Han, Jiaqi Ma, Marilia Ramos and Changju Lee

Journal of Risk and Reliability, 2023, vol. 237, issue 2, 355-366

Abstract: The advent of automated vehicles (AVs) will provide opportunities for safer, smoother, and smarter road transportation. During the transition from the current human-driven vehicle (HV) to a fully AV traffic environment, there will be a mixed traffic flow including both HVs and AVs. The impact of introducing AVs into existing traffic, however, has not yet been fully understood. In this paper, we advance this understanding by conducting mixed traffic safety evaluation from the perspective of car-following behavior using real-world AV operational data of mixed traffic. To understand how the AVs impact other vehicles on the road, we analyzed the operational behaviors of HV-following-HV, AV-following-HV, and HV-following-AV. A selected car-following model is calibrated, and results show that there are significant differences between the HV-following-HV and the other two groups, indicating safe AV behavior and changes in HV behavior (i.e. less aggressive, safer) after the introduction of AVs into the traffic. Additionally, to understand AV behavioral safety, we investigate behavior predictions (one of the most critical inputs for AVs to make car-following decisions) of AVs and their surrounding vehicles using a mature baseline model and a new Conditional Variational Autoencoder (CVAE) framework. The result shows potential risks of inaccurate predictions of the baseline model and the necessity to consider additional factors, such as vehicle interactions and driver behavior, into the prediction for risk mitigation. Arterial vehicle trajectory data from the Lyft Level 5 Dataset is applied to test the proposed methodological framework to understand the car-following safety risks of HVs and AVs in the mixed traffic stream.

Keywords: Automated vehicles; operational safety; trajectory prediction; conditional variational autoencoder; car following behavior; risk (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X211050696 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:237:y:2023:i:2:p:355-366

DOI: 10.1177/1748006X211050696

Access Statistics for this article

More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:risrel:v:237:y:2023:i:2:p:355-366