Toward a hybrid causal framework for autonomous vehicle safety analysis
Stephen Thomas and
Katrina M Groth
Journal of Risk and Reliability, 2023, vol. 237, issue 2, 367-388
Abstract:
Autonomous Vehicles (AVs), also known as self-driving cars, are a potentially transformative technology, but developing and demonstrating AV safety remains an open question. AVs offer some unique challenges that stretch the limits of traditional safety engineering practices. Most current safety standards and methodologies in the AV industry were not originally intended for application to autonomous vehicles, and they have significant limitations and shortcomings. In this article, we analyze the literature to first build an argument that a new safety framework is needed for AVs. We then use the identified limitations of current methodologies as a basis to formulate a set of fundamental requirements that must be met by any proposed AV safety framework. We propose a new AV safety framework based on the Hybrid Causal Logic (HCL) methodology, which combines Event Sequence Diagrams (ESDs), Fault Tree Analysis (FTA), and Bayesian Networks (BNs). The HCL framework is developed at a conceptual level and then evaluated versus the identified fundamental requirements. To further illustrate how the framework may meet the requirements, a simple example of an AV perception system scenario is developed using the HCL framework and evaluated. The results demonstrate that the HCL framework provides an integrated approach that has the potential to satisfy more completely the fundamental requirements than the current methodologies.
Keywords: Autonomous vehicles; risk assessment; functional safety; hybrid causal logic; Bayesian network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X211043310 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:237:y:2023:i:2:p:367-388
DOI: 10.1177/1748006X211043310
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().